

Tetrahedron Letters 44 (2003) 2733-2736

A highly efficient olefin metathesis initiator: improved synthesis and reactivity studies

Aideen M. Dunne, Stefan Mix and Siegfried Blechert*

Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany Received 5 December 2002; revised 3 February 2003; accepted 3 February 2003

Abstract—The synthesis of ligand **8**, required for the preparation of catalyst **4c** has been optimised. Ligand exchange studies indicate that biphenyl-based alkylidene **4c** initiates considerably faster than its unsubstituted analogue **4a**. The performance of **4c** in ring-opening cross metathesis reactions involving substrates containing unprotected chelating atoms is also reported. © 2003 Elsevier Science Ltd. All rights reserved.

The olefin metathesis reaction is one of the most synthetically useful carbon–carbon bond forming reactions.¹ This is largely due to the discovery of active, well-defined ruthenium alkylidenes such as 1–4 (Fig. 1), which combine high catalytic activity with impressive functional group tolerance.²

The exchange of one phosphine ligand for a *N*-heterocyclic carbene (NHC) moiety (2, 3 and 4) leads to 'second generation' alkylidenes possessing improved activity relative to the parent Grubbs' catalyst 1, with-

Figure 1. Olefin metathesis catalysts.

out an accompanying loss in stability. The chromatography-stable catalyst **4a** initiates more slowly than the phosphine-based **3**, however its use can be advantageous in certain situations, particularly in metathesis reactions involving electron-deficient olefins. ^{1g,3} Our group has modified the isopropoxy benzylidene component to give analogues of **4a** (**4b** and **4c**) which initiate faster than benchmark catalyst **3**, while retaining the air- and moisture insensitivity characteristic of NHC-based catalysts. ^{2h,i} Of particular interest is biphenyl derivative **4c**, which was shown to exhibit impressive activity in ring-closing metathesis (RCM), cross metathesis (CM), ring-opening cross metathesis (ROM-CM) and ring-opening metathesis polymerisation (ROMP) reactions. ²ⁱ

To explore the synthetic potential of 4c further, significant amounts of catalyst were required. The original synthetic route, while suitable for small scale laboratory syntheses, was not practical for larger scale operations and was heavily reliant on column chromatography purification steps. We were thus encouraged to develop a straightforward and convenient method ideal for preparing this ligand efficiently on a large scale, using inexpensive starting materials but without using expensive and time-consuming separating techniques. With this in mind, we first attempted to carry out the alkylation of 2-hydroxybiphenyl with paraformaldehyde using the literature procedure.4 In our hands, this reaction failed to give the desired products. We then turned our attention toward more traditional methods (Scheme 1). The oxidation of the sodium salt of 2hydroxybiphenyl (5), under Kolbe-Schmitt conditions, lead to the formation, on acidic work-up, of the corresponding carboxylic acid (40%) with recovery of 2-

^{*} Corresponding author. Tel.: +49-30-314-22255; fax: +49-30-314-23619; e-mail: blechert@chem.tu-berlin.de

Scheme 1. Synthesis of ligand 8.

hydroxy biphenyl.⁵ The crude reaction mixture was quantitatively alkylated with excess isopropylbromide, which allows the formation of the isopropylether moiety with concurrent esterification of the carboxylate group. This is desirable, as the direct reduction of the ester 6 rather than the precursor acid is thus facilitated. At this stage the crude product was purified by distillation (twice) to furnish alcohol 7. The corresponding benzaldehyde derivative was obtained after MnO₂-oxidation of 7, and could also be purified by distillation. Subsequent Wittig olefination and filtration of the crude product through a short silica-gel column gave styrene 8 in good yield (Scheme 1) and in multi-gram quantities. Catalyst 4c was then prepared using standard techniques.²ⁱ

With more workable quantities of 4c in hand, we wanted to estimate the relative initiation efficiency of 4a and 4c. Since direct observation of the intermediates in metathesis reactions by ^{1}H NMR spectroscopy is often difficult due to their low concentration in solution, it was decided to monitor the rates of exchange of added isopropoxystyrenes with catalysts 4a,c in solution. This necessitated the synthesis of ligands 9 and 10, which are deuterated α - to the aromatic ring (Scheme 2).

The deuterium substituents were conveniently introduced via reduction of 6 and 11 with lithium aluminium deuteride. A subsequent oxidation/olefination sequence then gave the required ligands in good overall yields. Compounds 9 and 10 were reacted in equimolar quantities with 4c and 4a respectively in C_6D_6 . As the catalyst initiates the deuterated ligands are incorporated into the alkylidene over time, as indicated by the disappearance of the alkylidene signal (δ =ca. 16.6 ppm) and appearance of signals associated with the corresponding non-deuterated styrenes (15 and 8) (Scheme 3). Thus the relative initiation efficiency of 4a and 4c can be assessed (Table 1).

Scheme 2. Synthesis of deuterated ligands 9 and 10.

Scheme 3. Ligand exchange experiments.

Table 1. Ligand exchange conversions via Scheme 3

Entry	Reaction	Time	Conversion ^a (%)	
1	4a→14a	3 h		
2	$4a \rightarrow 14a$	21 h	41	
3	$4a \rightarrow 14a$	52 h	45 ^b	
4	$4b\rightarrow14b$	19 min	33	
5	$4b \rightarrow 14b$	39 min	41	
6 4b → 14b		137 min	53 ^b	

^a Determined by NMR.

Biphenyl-based catalyst 4c underwent much faster exchange with 9 than 4a did with 10. Since the steric and electronic effects of meta-phenyl group on the benzylidene moiety are negligible, it is clear that in the case of 4c, the energy barrier associated with spontaneous initiation at room temperature (i.e. dissociation of the Ru-O bond)⁷ is considerably lower than that of 4a. This can be reasonably attributed to a weakening of the chelation bond of 4c as a result of steric crowding by the adjacent phenyl substituent. Since the formation of stilbenes, which would require the intermediacy of a methylidene rather than a benzylidene intermediate, was not observed on the time-scale of the experiments, these results allow some insights to be obtained concerning the relative ability of 4a and 4c to dissociate their chelating isopropoxyether ligands.

We were also interested in testing the ability of the fast initiator 4c to promote the metathesis of traditionally challenging olefin substrates. It is known that unprotected amines and sulphides⁸ are generally poor substrates in olefin metathesis reactions due to their tendency to coordinate to the ruthenium centre, thus trapping the catalyst in an unreactive form. However, we were pleased to find that ROM-CM reactions⁹ between flexible and readily prepared norbornene and azanorbornene derivatives bearing either unprotected Lewis-basic nitrogen or sulphur atoms (16–19) and allyltrimethylsilane (22) proceeded with uniformly high efficiency (Scheme 4, Table 2). Pyridine, indole, unhindered sulphide and tertiary amine substituents were all found to be compatible with 4c in these reactions, with a maximum of 0.5 mol\% of initiator required for quantitative conversion of 16–19. The products from these reactions were formed as an expected mixture of regioisomers, 10,11 however, no attempt at separation

^b Equilibrium reached.

$$\frac{4c, 22 \text{ °C}, 24 \text{ h}}{CH_2Cl_2(0.05 \text{ M})}$$

$$\frac{Z}{(1.5 \text{ equiv})}$$

$$\frac{Z}{Z} = \text{SiMe}_3$$

$$\frac{Z}{Z} = \text{CH}_2COMe}$$

$$\frac{Ac}{Z} = \text{SiMe}_3$$

$$\frac{Z}{Z} = \text{CH}_2COMe}$$

$$\frac{Ac}{Z} = \text{$$

Scheme 4. ROM-CM promoted by 4c.

Table 2. Results of ROM-CM experiments

Substrate	CM Partner	Product	4c (mol%)	Yield (%)a
16	20	23a,b	0.3	72
17	20	24a,b	0.5	96
18	20	25a,b	0.3	90
19	20	26a,b	0.4	82
16	21	27a,b	3	39
17	21	28a,b	1	46
18	21	29a,b	1	50
19	21	30a,b	3	39
16	22	31a,b	1	55
17	22	32a,b	0.5	72
18	22	33a,b	0.5	68
19	22	34a,b	1	46

^a Refers to isolated yields after chromatography.

was made, as these experiments were designed only to test the functional group tolerance of 4c in ROM-CM processes. Less sterically encumbered CM partners 21 and 22 were not as effective as 20; isolated yields of cross products were reduced due to the ability of 27a,b—34a,b to participate in metathesis dimerisation and oligimerisation (as opposed to selective CM) processes under the reaction conditions.

Nevertheless, it is apparent that phosphine-free catalyst **4c** possesses functional group tolerance towards Lewisbasic potentially chelating functionality in ROM-CM reactions. In summary, we have developed an efficient and practical synthetic route to ligand **8**, which allows catalyst **4c** to be readily prepared in reasonable quantities. Reactivity studies have shown that despite displaying relatively high rates of exchange with deuterated ligand **9**, **4c** is a robust and synthetically useful catalyst for the ROM-CM of substrates bearing Lewis-basic chelating atoms.

References

For recent olefin metathesis reviews, see: (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18–29; (b)

- Fürstner, A. Angew. Chem. 2000, 112, 3140–3172; Angew. Chem., Int. Ed. Engl. 2000, 39, 3013–3043; (c) Roy, R.; Das, S. K. Chem. Commun. 2000, 519–529; (d) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371–388; (e) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–4696; (f) Ivin, K. J. J. Mol. Catal. A 1998, 133, 1–16; (g) Randall, M. L.; Snapper, M. L. J. Mol. Cat. A, 1998, 133, 29–40; (h) Schuster, M.; Blechert, S. Angew. Chem. 1997, 109, 2124–2144; Angew. Chem., Int. Ed. Engl. 1997, 36, 2037–2055.
- 2. (a) Nguyen, S. T.; Grubbs, R. H.; Ziller, J. J. Am. Chem. Soc. 1993, 115, 9858-9859; (b) Nolan, S. P.; Huang, J.; Stevens, E. D.; Petersen, J. J. Am. Chem. Soc. 1999, 121, 2674-2678; (c) Ackermann, L.; Fürstner, A.; Weskamp, T.; Kohl, F. J.; Herrmann, W. A. Tetrahedron Lett. 1999, 40, 4787-4790; (d) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 2247–2250; (e) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956; (f) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168-8179; (g) Gessler, S.; Randl, S.; Blechert, S. Tetrahedron Lett. 2000, 41, 9973-9976; (h) Wakamatsu, H.; Blechert, S. Angew. Chem. 2002, 114, 832-834; Angew. Chem., Int. Ed. Engl. 2002, 41, 794-796; (i) Wakamatsu, H.; Blechert, S. Angew. Chem. 2002, 114, 2509-2511; Angew. Chem., Int. Ed. Engl. 2002, 41, 2403-2405.
- (a) Gessler, S.; Randl, S.; Blechert, S. Synlett 2001, 430–433; (b) Cossy, J.; BouzBouz, S.; Hoveyda, A. H. J. Organomet. Chem. 2001, 624, 327–332; (c) Imhof, S.; Randl, S.; Blechert, S. Chem. Commun. 2001, 1692–1693.
- Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G. Synthesis 1980, 124–125.
- 5. Due to their similar pK_a values, repeated attempts to separate 5 and its corresponding acid non-chromatographically were unsuccessful.
- Use of CD₂Cl₂ resulted in significant catalyst decomposition. In C₆D₆, catalyst degradation in the absence of added styrene was monitored and found to be insignificant on the time-scale of the experiments.
- 7. The steric effect which promotes ligand dissociation would also be expected to hinder the catalyst deactivating reassociation back reaction. For a discussion of the mechanism of olefin metathesis catalysed by 3, see: Sanford, M. S.; Love, J. A.; Grubbs, R. H. *J. Am. Chem. Soc.* 2001, 123, 6543–6554.
- 8. For recent advances in the use of sulphur-containing metathesis substrates, see: (a) Gan, Z.; Roy, R. *Tetrahedron* **2000**, *56*, 1423–1428; (b) Spagnol, G.; Heck, M.-P.; Nolan, S. P. C.; Mioskowski, C. *Org. Lett.* **2002**, *4*, 1767–1770; (c) Smulik, J. A.; Giessert, A. J.; Diver, S. T. *Tetrahedron Lett.* **2002**, *43*, 209-211.
- (a) Schneider, M. F.; Blechert, S. Angew. Chem. 1996, 108, 479–481; Angew. Chem., Int. Ed. Engl. 1996, 35, 411–413; (b) Schneider, M. F.; Lucas, N.; Velder, J.; Blechert, S. Angew. Chem. 1997, 109, 257–258; Angew. Chem., Int. Ed. Engl. 1997, 36, 257–258; (c) Randall, M. L.; Tallarico, J. A.; Snapper, M. L. J. Am. Chem. Soc. 1995, 117, 9610–9611; (d) Snapper, M. L.; Tallarico, J. A.; Randall, M. L. J. Am. Chem. Soc. 1997, 119, 1478–1479; (e) Randl, S.; Connon, S. J.; Blechert, S. Chem. Commun. 2001, 1796–1797; (f) Lee, C. W.; Choi, T.-L.; Grubbs, R. H. J. Am. Chem. Soc. 2002, 124, 3224–3225.

- 10. All products gave satisfactory analytical data.
- 11. Sample ROM-CM procedure: To a stirred solution of 16 (0.30 mmol) and allyltrimethylsilane (0.45 mmol) in CH_2Cl_2 (6 mL) under N_2 was added 4c (0.0009 mmol).

The solution was stirred at rt for 24 h and the solvent removed in vacuo. The residue was purified by column chromatography to give **20** (0.22 mmol, 72%) as a light yellow oil.